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LITTER TO THE EDITOR 

On some exactly solvable potentials derived from 
supersymmetric quantum mechanics 
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Institute of Nuclear Research, Hungarian Academy of Sciences, Debrecen, PO Box 51. 
Hungary 4001 

Received 3 February 1992 

AbslracL It is demonstrated that seven exactly solvable potentials derived recently fmm 
supersymmetric quantum mechanics and presented as new ones can, in fact, be obtained 
from one or other of the 12 known shape-invariant poteniiais by a simple choice of the 
potential parameten. Ihe remarkable result that the energy spectrum of three potentials 
is independent of cenain parameters is also interpreted in a straightforward way. 

The introduction of supersymmetric quantum mechanics (SUSYQM) [l] generated re- 
newed interest in solvable problems of non-relativistic quantum mechanics. This 
approach relates pairs of one-dimensional potentials ('SUSY partner potentials') to 
each other using (super)algebraic manipulations, and has led to the remarkable find- 
ing that knowing the ground-state wavefunction of a potential V-(z), one can easily 
construct its SUSY partner V+t;iz) witn the same energy eigenvaiues, except for the 
ground state, which is missing from the spectrum of V+(z). (See, for example [Z] for 
a recent review.) Several new exactly solvable potentials were identified this way. 

It was soon noticed that the SUSY partner potentials often depend on the coor- 
dinate in the same way [3], which simplifies the calculation of the wavefunctions and 
energy eigenvalues to a considerable extent These 'shape-invariant' potentials, which 
form a special subclass of solvable potentials were, in fact, found to be essentially the 
same as those obtained earlier [4] from the factorization method. Several attempts 
were made to identify and classify all the shape-invariant potentials [S-71, and the 
results suggest that finding further such potentials in addition to the 12 known ones 
is unlikely, nevertheless its possibility cannot be ruled out completely. 

Recently a number of new solvable potentials have been reported either as basic 
new results or  as examples or illustrations to some novel approaches inspired by 
SUSYQM. Here we show that although the authors stress the novelty [8-11] and the 
shape-invariant nature [10,11] of these potentials, they can be obtained from already 
known PI and PI1 class [6] (or, alternatively 141, type A and E) shape-invariant 
potentials by an appropriate choice of the potential parameters. A common feature 
of these potentials is that their solutions contain Jacobi polynomials (which are closely 
related to the hypergeometric functions 1121). We summarized the relation between 

he written formally as V-( A,  E ;  az + 6), where A and B define the shape of the 
potentials, a is a scaling factor of the coordinate, while 6 simply corresponds to a shift 
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along the I axis. We displayed the 'new' potentials and the parameters they depend 
on in table 1, and gave their relation to the 'old' potentials V-( A, B; a 2  + 6) in 
table 2. We also presented the notation of the potentials in terms of a classification 
scheme of shape-invariant potentials described in [6]. Here g(r)  is a function which 
appears in the argument of the Jacobi polynomials and which identifies uniquely the 
individual potentials within the PI and PI1 classes [6]. (This classification scheme is 
basically the same as the one obtained from the factorization method [4], although 
the two approaches follow different principles of classification, and it differs from a 
third scheme [S] which is based on the formalism of SUSYQM.) 

Table 1. The *new* potentials in [8,9,10,11] expressed in their original form. See the 
text far the definition of the 'defonned hyperbolic funclions' sech, z and t anh ,  z in 
IlOl. 

Reference V(Z) parameten 

[SI 

[91 - $ ( I -  ~ 2 ) ( ~ - o e ~ ~ ~ - = &  - 2-aeJi(-J1 (I. A. a 

- ( p 2  cos 24 - f ) s e c h z  T + pz sin 24sech2 z s i n h  z P. 4 
a'*. -2s A a e r  -T 

[lo] Ex. I. - X ( X - a ) g ( s e ~ h , c r i ) ~ + Z P t a n h , ( ~ z + X ? +  $ a, P. A, q 

Ex. 2. ( p 2  - qX(A - a ) ) ( s e c h ,  (12)~ + p(2X - o)( tanh,  az)(sech,  ai) + Xz a, A, f i ,  q 

Ill] (33) (a  + b)2 - c o i h l r  + sanhar a, b 

(39) - n Z + ~ + ~ + 2 b t a n z  0 ,  b 

(40) -az + +('La- l ) b %  a, b 

m..... . -. --,..:.- L ..^I 1 :... .._I .L. >:.. '̂ ,A3 .LA-- 
.a"IC &. ,,IC lCldl,",, "CLWCC,, ,us ,,- puLc"L1"" a"" ,,,= ti"1Layur,",,tg "I" m a p -  

invarianl potentials. (Notation of [6] were used here.) One should avoid confusing 
parameten A and a in [9] and [ll] with A and a in [6]. 

In order to get the conventions usually used in SUSYQM (i.e. to get a potential 
with zero ground-state energy) one also has to add a constant term to the potentials 
in !8] and [9!. In addition t o  this, one also has to rewrite hyperbolic functions in 
terms of exponential ones to recover the potential discussed by Williams [9] in its 
original form. The expression of the energy eigenvalues E, also has to be rearranged 
somewhat in this case. 
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The 'new' potentials were obtained using various approaches. Williams [9] f01- 
lowed earlier works (6,131 to construct a new class of solvable potentials related 
to the Jacobi polynomials but, as can be seen from the tables, what he found is 
a PI1 class (or type E) potential, sometimes referred to as the Eckart potential, 
shifted along the x axis. In a recent study of the mathematical background of 
SUSYQM and shape-invariance Arai [lo] used 'deformed hyperbolic functions' (like 
sinh, I % $(e" - q e-"), coshq I = $(e" + q e-"), sech, I G l / cosh ,  z and 
tan h, x E sinh. E/ cosh. I) to derive 'new' shape-invariant potentials as illustrative 
examples. It cah be shokn; however, that thesk are also shifted PI and PI1 class 
potentials. Both Williams 191 and Arai [IO] notice that the energy spectrum of their 
potentials is independent of the a and q parameters, respectively. The interpretation 
of this result is clear since, as we see, these parameters represent practically only a 
shift along the x axis, so they should not be relevant to the basic results. (It has to 
be mentioned, though, that B depends on q in Example 2 of [lo] but, similarly to  
other Pi ciass i6j (or yype A i4jj potenriais the energy spectrum is independent of 3, 
and therefore of q and p.) 

Cerver6 [8] used a new method (based on the Jacobi elliptic functions) to de- 
rive solvable potentials within the framework of sUSYQM, and taking the hyperbolic 
functions as a special case (the standard limit of the Jacobi elliptic functions,) he 
obtained a two-parameter potential which contains the Poschl-Rller potential as a 

in certain cases, Cerver6 also suggested that the new potential maintains this property 
for some values of the parameters since, as he claimed, it can be obtained from the 
Poschl-Rller potential through supersymmetric transformations. However, as can be 
seen from the tables, this is a PI class potential and was known earlier. Furthermore, 
scattering amplitudes have also been determined for this case [14], and the results 
show that it can be reflectionless only if A/" is an integer and B = 0 hold, i.e. 
only in case of the  symmetric Poschl-Rller potential with specific depth. It can also 
be shown that one cannot obtain the general potential in [8] from the symmetric, 
reflectionless Poschl-Rller potential by means of supersymmetric transformations. 

Cao [U] presented a number of two-parameter shape-invariant potentials to 
demonstrate that they can be recovered from the new 'C transformation'. There are 
three 'new' ones among them which, however, can be obtained from 'old' shape- 
l l l Y ' l l l d l l l  puLCrlrlala vy rlr,,,c,lLaly u'l,L~L"~l,,aLlu.L& N L r l V U g r l  puLcrtu~.r~ {37, 'I,," (*", 
in [ll] formally differ from the ones in earlier compilatiqns 146,151,  sine and cosine 
functions can be rewritten into each other by simply adding 7r/2 to their arguments 
(i.e. by a shift of the coordinate I), which means that they cannot be considered 
essentially new potentials. We mention here that potential (39) in [ll] has also been 
referred to briefly as a new one by Barclay and Maxwell [7]. 

The potentials discussed here all belong to the PI and PI1 class: which implies that 
the corresponding wavefunctions can be expressed in terms of the P?"'(z) Jacobi 
polynomials. The two parameters give rise to a wide variety of potential shapes, which 
may explain why some of the 'new' potentials failed to  be identified with 'old' ones. 
A remarkable fact is that three of the five PI class, and all three PI1 class potentials 
were derived in one way or another without being related to earlier results. 

We remark here that some PI1 class potentials are in close connection with the 
Coulomb problem. Noting, for example, that the cosh x function is close to 1 near 
the origin, while the sinh z function approximates I there, the Eckart potential 
(PII(cothz)) with I > 0 approximates V ( I )  = - Z e Z / x  + 1 ( 1  + 1)/2 (up to 

p&! limit. Neting !hat t!$ !zttpr anp & kfiQ*. tQ possprr zpr(? rpflpyti_(?n mpffiyient 

:....,.-:--. _^.^_. :-*- L.. ^,^ ^C ----. :.._- *I.L^._"L ----... :*," ,3n\ ^_., ,A_\  
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an additive constant) if we write 2 B / a  = Ze2 and A/. = 1 + 1 (see table 1.). 
This is a reasonable approximation only if the wavefunctions are restricted to the 
neighbourhood of the origin, but this is the case for large values of B and relatively 
small values of A and n. This result is also confirmed by the energy spectrum E$-) = 
A ’ + B ’ / A Z - ( A + n a ) 2 - B ’ / ( A + n a ) 2  whichisdominated by thelast term in this 
case, recovering the familiar -Z2e4 /4( n + 1 + 1)’ expression. (Similar considerations 
are valid for the PI1 (-i cot z) potential in table 2 too.) An interesting aspect of this 
connection is that the Hulthen potential is sometimes compared with the Coulomb 
problem [16]. Their relation becomes transparent in view of the fact that the Eckart 
(PI1 (coth z)) potential contains the V(r) = -V,exp(-r/c)/(l - exp(-r/c)) 
Hulthen potential as a special case, with A = a = $c and B = (and, of course, 
z = r). This connection between the PI1 class [6] (or type E [4]) potentials (like 
the Eckart and Rosen-Morse potentials) and the Coulomb problem, which is an LIII 
[6] (or type F [4]) potential is also confirmed by the classification scheme of shape- 
11I”allalll puLcnrl‘lr3 plG”c”Lc” “y wupcr ea U1 ,JJ, auvruurg L U  WIlLLll ULC auuvc LIIICt: 

potentials belong to the same class. The PI1 (-i cot I) potential, which is present in 
[4], but is missing from [5] (as well as from other compilations [15],) could also be 
assigned to this common class. 

In conclusion, we have shown that some shape-invariant [10,11], and non-shape- 
invariant but solvable potentials [S, 91 presented recently as new potentials can, in fact, 
be obtained from one or another of the  12 known shape-invariant potentials, This 
result is in accordance with the conclusion drawn from several independent studies 
[5-71 using essentially different methods, implying that finding further shape-invariant 
potentials is unlikely, although a complete proof of this conjecture has not been 
given yet. Despite this negative result, the variety of ways the ‘new’ potentials were 
found shows the potential power of SUSYQM to generate further exactly solvable (but 
possibly not shape-invariant) potentials. 

. .  ~ - -  -^_^__:*I” - - ~ ^ ^ _ _ ^ A  L.. ,. ̂ ^ _ ^ _  -. .I r r ,  -...-A:-- .̂  ... L._L .L̂  .L... 
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